Cannot open file (/var/www/vhosts/ write to file (/var/www/vhosts/ AprendBlog » 2014 » September

Sep 15 2014

Correlated noise reduction

Tag: Math,Noise,softwareadmin @ 10:28 am
The noise of the components of the A-vector is highly correlated and the previous post showed a way to produce low noise images analogous to conventional, non-energy selective images by “whitening” the A-vector data. That is good but is there a way to use the correlation to produce lower noise material selective images such as bone or soft tissue canceled? It turns out there are many methods that are seemingly different but are all based on the correlation. Al Macovski introduced the idea and his group at Stanford published several papers on it. It has been used in commercial systems. For example, the Fuji Corporation used an elaborate iterative method to reduce the noise in their “sandwich” photostimulable screen detector system[4]. Other companies like GE are more secretive but I think that they used a similar method with their voltage switching flat panel system.


In this post, I will describe a linear least mean squares method, which is a simplified version of the approach introduced by Cao et. al.[2], who also did her work at Stanford. This approach has straight-forward theory, is easy to implement and is effective at reducing noise. One problem with the approach is that it may change the quantitative values of the data in CT and Kalendar et al.[5] published an enhancement that may retain the quantitative information. However, if quantitative data are important, then the software can extract data from the underlying images guided by an operator using the noise-reduced image.

more –>;

Sep 04 2014

Dimensionality and noise in energy selective x-ray imaging-Part 3 low noise conventional images

Tag: Noise,Physics,softwareadmin @ 11:06 am
I have been discussing my recently published paper, Dimensionality and noise in energy selective x-ray imaging, available for free download here. In this post, I will show how to create low noise images with properties analogous to conventional images from the energy spectrum data used in the previous two posts of this series to compute the A-vector images. The results verify that the noise in the ’conventional’ images computed from energy spectrum information is lower than images computed from the total number of photons only.

more –>;