Dec 20 2011

Normal probability models for x-ray measurements

Tag: Noise,Physics,softwareadmin @ 11:04 am

In my last post, I described a three part model used in statistical signal processing: (1) an information source produces outputs described by a finite dimensional vector, (2) a probabilistic mapping between the source outputs and the measured data, and (3) a receiver or processor that computes an estimate of the source output or makes a decision about the source based on the data. I showed that in x-ray imaging the information is summarized by the A vector whose components are the line integrals of the coefficients in the expansion of the x-ray attenuation coefficient. The basis set coefficients a(r) depend on the material at points r within the object and the line integrals Aj = aj(r)dr are computed along a line from the x-ray source to the detector. I then showed the rationale for a linearized model of the probabilistic mapping from A to the logarithm of the detector data L

(1) δLwith_noise = MδA + w

In this post, I will try to convince you that the multivariate normal is a good model for the noise w. This will lead me to discuss tests for normality including probability plots and statistical tests based on them such as the Shapiro-Wilk test[4] (available online) for univariate data and Royston’s test[3] for multivariate data.

more –>;