Dec 29

## SNR with pileup-2: Overall plan and NQ detector statistics with pileup

In this post, I continue the discussion of my paper “Signal to noise ratio of energy selective x-ray photon counting systems with pileup”[2], which is available for free download here. The computation of the SNR is based on the approach described in my previous paper, “

*Near optimal energy selective x-ray imaging system performance with simple detectors*[1]”, which is available for free download here. The approach is extended to data with pileup.The “Near optimal …” paper shows that regardless whether there is pileup or not, if the noise has a multivariate normal distribution and if the feature is sufficiently thin so the covariance in the background and feature regions is approximately the same, the performance is determined by the signal to noise ratio. So the first thing that has to be done is to show that the data with pileup satisfy these conditions. My plan for the discussion of the SNR paper is therefore as follows.

- First, I will use the idealized model and the Matlab function to generate random recorded counts described in the previous post to develop code to compute random samples of data from NQ and PHA detectors with pileup. I will use these functions to derive and validate formulas for the expected values and covariance of the data. These are required to compute the SNR.
- I will then use these models and software to determine the conditions so that the probability distribution of the data can be approximated as multivariate normal.
- Next, I will show how to use the Cramèr-Rao lower bound (CRLB) to compute the A-vector covariance with pileup data. I will use this to show that we can, under some conditions, use the constant covariance approximation to the CRLB with pileup data just as we can with non-pileup data as shown in this post.
- Finally, I will apply these results to compute the reduction of SNR as pileup increases.

In this post, I will use the Matlab function discussed in the previous post to compute random samples of recorded photon counts (N) and total energy (Q) data. These are data from an NQ detector with pileup. I will use these data to validate the formula for the covariance derived in Appendix C of the SNR paper. I will present Matlab code to reproduce Fig. 9 of the paper, which shows the covariance and the correlation of the data as a function of the dead time. I will also use the same data to validate the formulas for the expected value and variance of the recorded counts and the total energy as a function of dead time. These formulas are described in Section 2.E of the paper.

Comments Off