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Abstract—An estimator to image contrast agents and
body materials with x-ray spectral measurements is de-
scribed. The estimator is usable with the three or more
basis functions that are required with high atomic humber
materials. The estimator variance is equal to the Cramer-
Rao lower bound (CRLB) and it is unbiased. Its parameters
are computed from measurements of a calibration phantom
with the clinical x-ray system and it is non-iterative. The
estimator is compared with an iterative maximum likeli-
hood estimator. Methods: The estimator first computes
a linearized maximum likelihood estimate of the line in-
tegrals of the basis set. Corrections for bias errors in
the initial estimates are computed by interpolation with
calibration phantom data. The final estimate is the initial
estimate plus the correction. The estimator parameters are
computed from measurements of a calibration phantom
with the clinical x-ray system. The performance of the
estimator is measured using a Monte Carlo simulation.
Random photon counting with pulse height analysis data
are generated. The mean squared errors of the estimates
are compared to the CRLB. The random data are also
processed with an iterative maximum likelihood estimator.
Previous implementations of iterative estimators required
advanced physics instruments not usually available in
clinical institutions. Results: The estimator mean squared
error (MSE) is essentially equal to the CRLB. The estimator
outputs are close to those of the iterative estimator. The
computation time is approximately 180 times shorter than
the iterative implementation. Conclusion: The estimator is
efficient and has advantages over alternate approaches
such as iterative estimators.
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I. INTRODUCTION

The state of the art of photon counting detectors is
advancing rapidly and their use in clinical systems may be
possible in the near future[1], [2]. These detectors have
the capability to measure the energy of the individual
photons with pulse height analysis (PHA). Since each
PHA energy bin can be considered to provide a separate
spectral measurement, they have the potential to provide
many more spectra than were previously available and
methods to process this information are required.

This paper describes an estimator that uses these
multiple x-ray spectrum measurements to extract energy
dependent information optimally. The estimator is efficient
over a large range of object thicknesses with variance
essentially equal to the Cramer-Rao lower bound (CRLB)
and with bias much smaller than the noise standard devi-
ation. The estimator is non-iterative and the parameters

required to implement it can be computed from mea-
surements of a calibration phantom with the clinical x-ray
system. The rationale for the estimator is described and
its use is justified by its empirical performance measured
with a Monte Carlo simulation.

The estimator implements a key step in the Alvarez-
Macovski method[3]. With this method, the x-ray attenu-
ation coefficient is approximated as a linear combination
of basis functions of energy multiplied by coefficients that
are independent of energy. The estimator uses measure-
ments of the number of photons transmitted through the
object with different spectra to compute the line integrals
of the basis set coefficients. The vector of these line
integrals will be referred to as the A-vector here.

The number of basis functions, the dimensionality,
determines the available information and the minimum
number of spectra required to extract it[4]. A two function
basis set is sufficient to approximate the attenuation
coefficients of biological materials[3]. However, a three
or higher dimension basis set is needed if an externally
administered high atomic number contrast agent is used.
In this case, measurements with three or more effective
spectra are required.

A previous paper[5] described a two dimension
estimator[6], [7]. Because of the two dimension limita-
tion, this implementation could not be used with contrast
agents. In this paper, a new estimator is described that is
usable with three or more basis functions as well as two
functions.

The rationale for the estimator is based on the near
linearity of the logarithm of the number of photons trans-
mitted through the object as a function of the A-vector.
Assuming a linear system and a multivariate normal dis-
tribution, the linear maximum likelihood estimator (linear
MLE) is the minimum variance unbiased estimator[8].
Because the nonlinearity is small, the variance of the
linear estimates is close to the CRLB of the actual,
nonlinear system. The nonlinearity, however, leads to bias
of the linear estimates that needs to be minimized for
quantitative applications such as computed tomography
(CT). This is done by correcting the initial estimates
based on known calibration data. The final estimate is the
initial estimate plus the correction. Since the correction
values are computed from a table of A-vector values, the
estimator is called the A-table estimator.

A method to compute the parameters of the estimator
from measurements of a calibration phantom with the
clinical x-ray system is described. The design of the
calibrator and ways to compute the estimator parameters



from the data are shown.

The performance of the estimator is tested with a
Monte Carlo simulation using realistic models of an x-ray
tube spectrum and x-ray attenuation coefficients. The ran-
dom Monte Carlo data are generated using the full nonlin-
ear transmitted spectrum model. The estimator operates
on the random data and the covariance of the A-vector
estimates is compared to the fundamental Cramér-Rao
lower bound (CRLB), which is the minimum covariance
for any unbiased estimator[9]. To do this comparison, the
mean squared error (MSE) of the A-vector estimates is
compared with the CRLB. Using the well-known fact that
the MSE is the variance plus the square of the bias[10]
and since both of these quantities are positive, if the MSE
is equal to the CRLB, which is the minimum variance,
then we can conclude that the bias is negligible and the
estimator is efficient.

Prior estimators for higher dimensions[11], [12] utilized
an iterative implementation of the maximum likelihood
method. Even though maximum likelihood estimators
have many desirable properties[13], this implementation
required separate measurements of the x-ray tube source
spectrum and the detector spectral response. In the
experiments, the source spectrum was measured us-
ing a cooled germanium detector with energy resolution
of a few hundred electron-volts. The PHA energy bin
thresholds were measured using the DESY synchrotron
radiation nuclear physics accelerator[14] to provide nearly
monoenergetic tunable x-ray radiation. See their paper for
a detailed description of the experimental technique.

Although these are extremely impressive results, this
experimental method is not practical with the facilities
commonly available at clinical institutions. Due to com-
ponent aging, the sputtering of x-ray tube anode material
on the x-ray tube window and other effects, spectral x-
ray systems need to be calibrated periodically so an
estimator whose parameters can be measured at clinical
sites is required. lterative estimators also have possible
problems with stability and have long and unpredictable
computation times. This is a problem for modern medical
x-ray systems such as CT scanners that require real-time
computations in fixed times.

To test the performance of the A-table estimator, it is
compared with an iterative maximum likelihood estimator
that assumes that the source spectrum and the PHA
detector energy bins are known.

II. METHODS

The estimator and its operation are described in Fig.
1. In order to apply the concept to higher dimensions,
we need interpolators for multidimensional non-regularly
spaced data and a multidimensional calibrator with a
method to compute the estimator parameters from its
data. An iterative maximum likelihood estimator for com-
parison with the A-table estimator is also described in this
section.

A. The A-space method in higher dimensions

This section summarizes the Alvarez-Macovski method
and introduces notation. A two dimension basis set is
sufficient to approximate the attenuation coefficients of
body materials accurately but, with a high atomic number
contrast agent, we need three or more functions[4]. In the
three dimension case, the attenuation coefficient u(r, )
at each point r in the object at energy E is

u(r, E) = ai(r) fi(E) + az(r) f2(E) + as(r) f3(E) (1)

where a;(r) are the basis set coefficients and f;(E) are
the basis functions, i = 1...3. As implied by the notation,
the basis set coefficients a;(r) are functions only of the
position within the object and the basis functions f;(E)
are functions only of the x-ray energy. The extension to
higher A-vector dimensions is straight forward.

Neglecting scatter, if an effective measurement spec-
trum Sy (F) is used, the expected value of the number of
transmitted photons ny is

A = (ng) = /Sk(E)ef JueBdrgp k=1,..., nspect
(2)

where nspect is the number of spectral measurements
and ( ) denotes expected value. Using (1), the line inte-
gral can be expressed as

[ Bydr = Afi(B) + Aafa(B) + Aafa(E). 3)

where 4; = [a;(r)dr, i = 1...3. The A; are the
components of the A-vector A and the measurements
can be summarized by a vector N whose components
are the measurements n;, with the different spectra.

In an x-ray system, the measurements have noise and
the Alvarez-Macovski method requires an estimator to
compute the best estimate of the A-vector taking into
account the probability distribution of the measurements.

B. The maximum likelihood estimator with x-ray spectral
data

The maximum likelihood estimator[13] is widely used
because it is asymptotically efficient in the limit of large
photon counts. Since large counts are required for ma-
terial selective imaging applications, the maximum likeli-
hood approach is well suited for these applications.

Assuming that the PHA detector counts are inde-
pendent and Poisson distributed, the likelihood function,
which is the probability of a particular measurement N
considered to be a function of A, is

nspect —/\k(A))\nk A
e
priNay = [ )
k=1 ’

where the expected values A\, (A) are given by (2) and
ny is the measurement with spectrum k. The maximum
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Fig. 1. A-table estimator block diagram. The estimator first computes an initial estimate A g With a linearized maximum likelihood estimator
(linear MLE). Because the mapping from measurements to object attenuation is non-linear, these initial estimates will have errors. The error
vectors are determined at a set of points in a three dimensional space from measurements on a calibration phantom and stored in the memory
labeled “calibration data.” During image acquisition, the A /7 is used to compute an error vector with components §4, , by multidimensional
interpolation. The final estimator output is the initial linear MLE plus the correction vector, A = A ;1.5 + dA.

likelihood estimate A ;. is the value of A that max-
imizes (4). It is convenient and equivalent to maximize
the logarithm of the likelihood

nspect

L(A)= Z ng log(Ag) — Ap — log (ng!) . (5)
k=1
We can attempt to find the maximum by setting the
derivatives of £ (A) equal to zero
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where ndim is the A-vector dimension.

Defining 2z (nx/x, — 1), equations (6) are a set of
ndim linear homogeneous equations in nspect unknowns,
zk, k=1,...,nspect
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If the number of spectral measurements is equal to the A-

vector dimension and the determinant of the coefficients
matrix
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is not equal to zero, the unique solution is

Zk:(;”“_l):07k:1...nspect. (8)

k
Note that the determinant of the coefficients J is the Ja-
cobian of the transformation N(A), which will be nonzero
if the measurement spectra are distinct.

Eq. 8 is equivalent to n;, = A\ so for the equal number
of measurements and dimensions case the maximum
likelihood estimator simply inverts the deterministic or low
noise transformation given by (2) with the measured data.
Therefore, any estimator that accurately inverts the trans-
formation is also the maximum likelihood estimator[3].

If there are more measurement spectra than the A-
vector dimension, then equations (7) have more un-
knowns, z;, k = 1...nspect, than the ndim equations.
This does not in general have a unique solution and
inverting the deterministic transformation with the mea-
sured data is not necessarily the maximum likelihood esti-
mator. In this case we need an alternative implementation
such as the iterative estimator described in Sec. II-J or
the A-table estimator.

C. CRLB for A-vector estimates

The CRLB is the minimum covariance for any estimator
and is a cornerstone of estimator theory. In general,
it is inverse of the Fisher information matrix F whose

elements are[9]
%L
%= ~(5ia5,)

where, it will be recalled, the symbol () denotes the
expected value. The first derivative of the log-likelihood
L is given by the left side of (6). Differentiating again

9)
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Since by the definition of ), the expected value
(nk — A\x) = (ng) — A\ = 0, the expected value of the
first term in the summand of (10) is equal to zero and the
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The terms in the brackets of (11) can be computed
without numerical differentiation by differentiating inside
the integral of the equation for the expected values of the

counts, (2),
fSk ZA'"f"L (E)4E

[Lon]

Defining the normalized spectrum transmitted through the
object

(12)

Sk(E e~ Z Am,fnl(E)
[ Si(B)e™ 2 AnIn®) g

we can see that the terms in the brackets of (11) are
the negatives of the elements of a matrix M(A) of the
effective values of the basis functions in the normalized
transmitted specitra,

My = / Fi(B)Su(A, B)IE = ()5,

The number of rows of M is the number of spectra and
the number of columns is the A-vector dimension. As
implied by the notation, in general M and the CRLB
depend on the A-vector.

Since the PHA count data are assumed to be inde-
pendent and Poisson distributed, the covariance is the
diagonal matrix

Se(A,E)

A1 (A) 0

Cn(A) = (13)

0 )\nspect (A)

Using equations (12) and (13) with (11
Fisher matrix is

), the complete

F(A)=MTCyM. (14)

This can be shown in detail by carrying out the indicated
matrix multiplications. Given the Fisher matrix, the CRLB
can be computed as the numerical inverse.

D. The linear maximum likelihood estimator in higher
dimensions

As shown in Fig. 1, the A-table estimator uses a
linearized maximum likelihood estimator. Since the body
transmission is exponential in A, we can approximately
linearize the measurements by taking logarithms. The
results is the log measurement vector L = — log(N/Ny),
where Ny is the expected value of the measurements

with no object in the beam and the division means
that corresponding members of the vectors are divided.
Idealizing the transformation L(A) as linear, the logarithm
of the measurements with noise is

Lwithinoise == MaveA +w (1 5)
where, for this model, M,ye = 9L/0a is assumed to be
constant and the noise w probability distribution is a
multivariate normal with zero mean and constant covari-
ance. With this model, the linearized maximum likelihood
estimator is [15]

Ayie = {(MaveTcleave) Mg,.Cp*
(16)

where Cy, is the assumed constant covariance of the
noise. The factor in brackets of (16) can be pre-computed
as a single matrix, so the linear MLE is a matrix multi-
plication times the measurement vector Lyith noise- 1h€
form of this estimator is unchanged for higher dimensions
although, of course, the matrix dimensions will change.

It should be emphasized that the A-table estimator
operates over the full range of the object and the data
to test it are computed using the full nonlinear model
in equations (2). In the linear model, the M,,. matrix
is the slope of the transformation L(A) at an operating
point. Since the transformation is close to linear, Maye
is approximately constant throughout the range of input
data.

The other parameter of the estimator, the noise covari-
ance Cy, varies inversely with the number of photons
so it depends exponentially on A and is obviously not
constant. However, examining the linear estimator in (16),
we note that if k is a constant, multiplying the covariance
by k results in an inverse (kCr) ' = 1/xCpl. If we
replace Cy, by kCy, in the estimator, the first factor in
the bracket of (16), (MTC;'M ~'is proportional to k
and the second factor, MTC', is proportional to 1/.
The two constant factors cancel out and the linear MLE
is unchanged if the covariance is multiplied by a constant.
Since the covariance depends on the number of photons
in each PHA bin and all the measurements are multiplied
by the object transmission, changing A does not affect
the estimator to a first approximation. Due to the larger
attenuation coefficients at low energy, as A increases the
low energy measurements are attenuated more than the
high energy measurements so the effect of changing A
is not simply to multiply the covariance by a constant but
the relative sizes of the elements of Cy, are changed. The
empirical Monte Carlo results show that the change is
small enough so that the noise covariance of the A-table
estimator is close to the CRLB throughout the range of A
tested. This is the justification for the use of the linearized
estimator.

The method to compute the M,,. and Cy, matrices
from calibration data is described in Sec. II-F.

:| Lwith noise



Fig. 2. Three material calibration phantom. Step wedges of three
materials with known thicknesses provide known A-vectors at points
in the three dimensional space. The transmitted flux through the cal-
ibration phantom is measured using the clinical x-ray system. The
measurements are done with high counts so they have low noise. The
measurement data are stored by the system computer in a memory to
be used during data acquisition to compute the correction vector. See
the estimator block diagram in Fig. 1.

E. A Calibration phantom for the estimator parameters

The purpose of the calibration phantom is to provide
low noise values of the measurement vector L for a set
of points in three dimensional A-space. A side-view of
a three material phantom is shown in Fig. 2. If we use
the attenuation coefficient functions of the materials of the
calibrator as the basis set[16], then the A vectors for each
step are simply the thicknesses of the materials along
lines from the x-ray source to the detector. The phantom
can be constructed from stable, machinable materials
such as acrylic plastic and aluminum. The third material
could be, as an example, a plastic resin with molecular
linked iodine whose attenuation simulates iodine contrast
agent in blood[17].

The calibrator data are acquired with the clinical x-
ray imaging system without requiring additional physics
instruments. A long exposure time or an average of
multiple exposures is used to produce low noise data.
To measure all parts of the phantom, it can be moved
through the x-ray system with a mechanical stage or a
CT scanner patient positioning table. With a fan beam
system, the actual path lengths through different parts
of phantom can be computed from its dimensions, the
known geometry of the x-ray system by developing a
method to locate the calibrator accurately with respect the
the scanner gantry such as affixing pins to the phantom
and scanning it. Fig. 2 shows a phantom with uniform
steps but exponentially spaced thicknesses provide better
results since they have closer spaced samples in the
region near the origin where the gradient of L is highest.
Points that are not on an evenly spaced lattice in A-space
can be accommodated by the error-correcting method
described in Sec. II-G.

F. Linear MLE parameters from calibration data

As discussed previously, we need M,,. and Cr, to
implement the linear estimator in (16). The matrix Maye
is the gradient of L(A) so we can approximate it as
the coefficients of a least squares fit of all the calibrator
measurements L ..ivrator @S @ function of the calibrator A-
vector values. This gives an average value over the range
of A uiibrator- The covariance Cy, is estimated from the

5Acalibra\tion

Fig. 3. Correction vectors for the initial linear MLE from calibration
data. The circles are the linear MLE estimates and the the lines are
the correction vectors from the estimates to the actual A-vector values.
Note that the corrections are three dimensional vectors. Only a sample
of the points is shown and the correction vectors are scaled for clarity.
The units of the axes are g/cm?.

sample covariance of the measurements in a region of
the phantom with constant A vector close to the center
of the A-vector region spanned by the calibrator. See the
discussion in Sec. II-D on the effect of the variation of Cy,
with A on the linear MLE.

G. Delaunay triangulation for interpolating corrections in
higher dimensions

Computing the corrections to the initial linear maxi-
mum likelihood estimates requires interpolation of un-
equally spaced data in higher dimensions. The interpola-
tion method used in the previous implementation[5] was
based on an algorithm[18] that fits a semi-flexible two
dimensional plate to the estimates. This algorithm is not
readily extended to higher dimensions so a new approach
is required.

Fig. 3 illustrates the computation of the correction
vectors. If we apply the linear estimator to the calibration
data, we get the correction values, which are a set of
irregularly spaced points in 3D space shown as the circles
in Fig. 3. The corrections are the vectors from the linear
MLE values to the known A-vectors for each step of the
calibrator. These correction vectors are shown as arrows
in the figure.

To compute the correction for a measurement during
the scan, we need to interpolate in the table of correction
vectors using the linear MLE value for the measurement.
Since these points are unequally spaced, we cannot
use ordinary interpolation algorithms designed for equally
spaced tables. For the estimator of this paper, linear inter-
polation on a Delaunay triangulation[19] of the calibration
points is used.



The Delaunay triangulation is the subdivision of the
points into simplexes that maximizes the minimum an-
gle of all the simplex’s angles. A simplex is a higher
dimensional extension of a two dimensional triangle. In
three dimensions, it is a tetrahedron. The triangulation
is pre-computed so the processing of a measurement
involves locating the enclosing simplex and computing the
interpolated correction vector JA as a linear combination
of the correction vectors at the vertices of the enclosing
simplex multiplied by the barycentric coordinates.

In the Monte Carlo simulation, the interpolation is com-
puted using the Matlab scatteredInterpolant function.
Open source code to compute the Delaunay triangulation
(delaunayn) and the enclosing simplex and the barycen-
tric coordinates (tsearchn) is provided by the Octave
project[20].

The Delaunay triangulation method is applicable with
two, three or higher dimensions. Notice that the interpo-
lation dimension is equal to the A-vector dimension. This
can be much smaller than the measurements dimension,
which is the number of PHA bins of the photon counting
detector.

H. Points outside the calibration convex hull

Due to noise, the initial linear estimate, A ,;.z, may
be outside the convex hull of the calibration data (see
Fig. 4). For these points we can use linear extrapolation
of the data on the nearest calibration data points. This
extrapolation method was sufficient to provide good per-
formance in the simulations but clearly other methods,
such as inverse distance weighted extrapolation, can
be used. Most of the out of range points occurred for
small object thicknesses, which have low noise, so the
deviations from the calibration convex hull are small. For
small thicknesses, the initial estimates may have negative
values and it is not possible for calibration data to span
these values. The calibrator dimensions were adjusted
so points in the objects with large A-vector values were
within the calibrator convex hull.

I. Optimal PHA energy bins

The PHA bins used in the simulation were computed
with an algorithm that maximized the SNR with the CRLB
as the covariance

SNR? = (6A)" Cy 'crop (6A)

The algorithm used as a signal §A = [0, 0, —1]”. That
is, the imaging task was to detect changes in the third
A-vector components with other components fixed. The
results however were not sensitive to this choice and were
the same if, for example, [-1, 0, 0]” or [0, —1, 0]" were
used. The SNR was optimized by exhaustively searching
all possible bin widths summing to the maximum energy
in the spectrum with an increment of 3 keV. The trans-
mitted spectrum with an A-vector in the center of the
calibrator was used.
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Fig. 4. The convex hull of the linear maximum likelihood estimates
of the calibration data. The calibrator shown in Fig. 2 has step wedge
thicknesses that are in a rectangular region of A-vector space. Because
of the nonlinearity of L(A), the linear estimator outputs are in the non-
rectangular space shown. The initial estimates A ;g may fall outside
the convex hull because of noise so the interpolator needs to be able
to extrapolate outside this hull. The top plot is a three dimensional
representation. The bottom three plots are the projections of the convex
hull onto the three coordinate planes. The units of the axes are g/cm?.

J. lterative estimator with Monte Carlo data

An iterative estimator was implemented and tested with
Monte Carlo data. The estimator assumes that the spec-
tra S; (E) and the attenuation coefficients of the basis
materials[16] are known. It computes the logarithm of the
likelihood of the PHA counts in (5) for a specified A-vector
using equations (2) to compute the A, and with the photon
counts ni, k = 1...nspect for each measurement. The
A-vector that maximizes the log-likelihood is computed
using the Matlab function fminsearch, which implements
the Nelder-Mead simplex direct search algorithm. Open
source code for this function is provided by Octave[20].

K. Monte Carlo simulation

The performance of the estimators was studied using
a Monte Carlo simulation. The simulation compared the
mean squared error of the estimates to the Cramer-Rao
lower bound.



A 120 kilovolt x-ray tube spectrum was generated
using the TASMIP algorithm of Boone and Seibert[21].
The number of photons incident on the object, which is
the integral of the spectrum, was assumed to be 10°.
As discussed in Sec. II-E, a basis set consisting of
the attenuation coefficients of acrylic plastic, aluminum,
and an iodine contrast agent simulant consisting of 20%
fraction by weight iodine in paraffin (Cs; Hgs molecular
composition) was used. The attenuation coefficients were
computed by piece-wise continuous Hermite polynomial
interpolation of the standard Hubbell-Seltzer tables[22].

The random data for each A-vector were generated by
computing the transmitted flux through the object with
the TASMIP x-ray tube spectrum and the basis material
attenuation coefficients. The transmitted photons were
incident on a photon counting detector with five bin PHA.
The detector was assumed to be perfectly absorbing so
the energy of each photon was measured with no added
noise. The expected value of the counts in each bin was
computed from the transmitted spectrum using (2). The
PHA energy bins were determined as described in Sec.
[I-l. The PHA response functions were assumed to be
perfect rectangles and the detector was assumed to have
negligible pulse pileup so the counts in each bin were
independent Poisson random variables. Random Poisson
distributed PHA counts with these expected values were
generated.

A calibration phantom with 30 steps for each material
was implemented. The thicknesses were geometrically
spaced from zero to 20, 1.5 and 0.125 g/cm? for each of
the calibration materials respectively. These were chosen
to be greater than the object values so all estimates
except for noise will fall within the estimates’ data convex
hull. The phantom transmission data for all steps and the
sample covariance at one step in the calibration phantom
were computed by averaging 300 sets of random data.
These were used as the parameters of the A-table esti-
mator. In a CT scanner, each set would correspond to a
single angle projection so the tube loading to acquire the
calibration data is equivalent to approximately a single
scan.

Objects with A-vectors on three lines through the
A-vector space (see panel (a) of Fig. 5) were used.
Each line is the A-vectors of different thicknesses of a
material whose attenuation coefficient can be approxi-
mated by different ratios of the basis materials’ attenu-
ation coefficients[23]. The end points of the lines in A-
vector space and therefore the ratios were [16, 1.2, 0.1],
[5, 0.9, 0.1125], and [16, 0.375, 0.1] g/em?.

The same random counts were used by each of the
estimators to compute the estimates of the A-vectors.
Since the input data are random, the estimates are also
random quantities so multiple trials were used. The mean
square error MSE of the estimates for these trials was
computed as

Nirials

MSE =

(A~ Awcum)  (17)

trials i—1

where A was the estimate, Aactual Was the actual A-
vector value, and Ny,.;.;s Was the number of random trials,
2000. Notice that the MSE is a vector quantity with a value
for each component of A.

The MSE of the A-table and iterative estimators were
compared with each other and with the CRLB. The CRLB
was calculated as described in Sec. II-C for each point
on the lines. The estimates for a specific random sample
of the data on Line 1 were also compared directly. The
computation times with both estimators were recorded.

I1l. RESULTS
A. Estimates on three lines in A-space

Fig. 5 shows the Monte Carlo estimates with the A-
table estimator for three lines through A-vector space.
The estimates are the individual points and the actual
values are the solid lines. Panel (a) shows the estimates
for data without noise. The other panels are the estimates
with noisy data on each of the three lines. The three
original lines are included in each panel for reference.
Random five bin PHA data were used.

B. MSE vs. CRLB

Fig. 6 shows the Monte Carlo simulation mean squared
error for the A-table and iterative estimators as a function
of distance from the origin along the three lines shown
in Fig. 5. The CRLB is also shown as the solid line. The
MSE was computed using (17). Notice that the vertical
scale is logarithmic. The A-table estimator results are the
diamonds and the iterative estimator are the asterisks.
The MSE values are nearly equal so the symbols overlap.

C. Estimates for same random sample

Fig. 7 compares the estimates of the A-table and the
iterative estimators for the same random data. The esti-
mates are approximately the same with the differences
increasing somewhat for the higher noise data at larger
A-vector magnitudes.

D. Optimal PHA energy bins

Fig. 8 shows the optimal PHA energy bins. The bin
boundaries are the vertical dashed lines and the arrows
show the bins. The attenuation coefficient of iodine and
the x-ray tube spectrum are shown for reference.

IV. DISCUSSION

The results in Fig. 6 show that, although there are
small random fluctuations, the A-table estimator mean
squared errors are essentially equal to the CRLB. As dis-
cussed previously, this implies that the bias is negligible
compared with the variance and the variance is close
to the CRLB. That is, the A-table estimator is efficient.
The low bias is also shown by part (a) of Fig. 5 where
the estimates with no noise data are close to the actual
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Fig. 6. The mean squared error and the CRLB for the A-table and iterative network estimators as a function of distance from the origin along
the three A-space lines in Fig. 5. Five bin PHA data were used. The A-vector components are plotted in columns from left to right and the result
for lines (1), (2), and (3) are in rows from top to bottom. The CRLB in each case is shown as a solid line. The A-table estimator is the diamonds
and the iterative estimator is the asterisks. Notice that both estimators have MSE close to the CRLB so their symbols overlap.

lines. The averages of A-vector estimates with noisy data
shown in the figure are also close to the actual values.

The interpolation errors and therefore the bias depend
on the spacing of the calibration points. As more steps are
used in the calibration phantom, the interpolation errors
decrease but the computation time increases linearly
with the number of Delaunay simplexes. A calibrator
with 30 steps for each type of material was used in
the simulations. If the computation time is a problem
it may be possible to pre-compute a finely sampled,
regularly spaced, three dimension look up table from the
calibration data. The Delaunay interpolator would still be
required to compute the regularly spaced table but this
would be done before a scan. During data acquisition, the
corrections would be computed from the regularly spaced
table, which is much faster than interpolation in Delaunay
simplexes.

Fig. 6 shows that both the iterative and the A-table
estimator have mean squared errors equal to the CRLB.
In addition, Fig. 7 shows that the A-table and the iterative
estimators produce close to the same estimates with the
same random data although there are small differences
with the high noise data at large A-vector magnitudes.
These two results indicate that the A-table outputs are
close to the maximum likelihood estimates and have
nearly equivalent statistical properties.

The iterative estimator computation time was approx-
imately 180 times longer than the A-table estimator.
The implementations were not optimized for computation
speed but this large difference would also be expected
for more optimized algorithms.

The optimal PHA energy bins are shown in Fig. 8.
Notice that the optimization algorithm, which maximizes
SNR for the imaging task described in Sec. II-I, places
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Fig. 8. Optimal PHA bins. The PHA bin edges are shown as the
vertical dashed lines; the bins are the horizontal arrows. The attenuation
coefficient of iodine (solid line) and the x-ray tube spectrum (dashed
line) are also shown for reference. Notice that there is a bin edge at the
k-edge of iodine, 33.2 keV. The optimal bins are computed as described
in Sec. II-I.

a bin boundary at the K absorption edge of the iodine
contrast material. The photons with energies smaller than
the K-edge have high information content so the algorithm
allocates a bin for these energies even though they are
highly attenuated by the object.

Current state-of-the-art photon counting detectors for
medical imaging have artifacts such as pulse pileup,
charge sharing, K-fluorescence radiation escape, and
others[24], [2]. Although the detector technology is ad-
vancing rapidly, estimators will need to utilize data with
some levels of these artifacts and methods to correct the
errors and to utilize data with errors are an important
area of research. Since the A-table estimator calibrator
data have errors similar to those in patient scans, the
correction step in the estimator implementation will also
correct some of the errors. However, the correction is
not complete and additional methods to utilize data with
experimental errors are a subject of current research.

Utilization of the three dimensional A-vector data to
produce clinically useful information is an important prob-
lem that is the subject of current research. Images of
the third component, or its reconstruction in CT, provide
indicators of the distribution of contrast material within the
patient with minimal contributions from the surrounding
body structures. These could be superimposed on lower
noise images of the anatomy created from the other
components as described in a previous paper[23]. Meth-
ods similar to those previously used with two dimension
data[25] could exploit the correlation of the noise in the
individual A-vector components to produce lower noise
images with material selective information.

V. CONCLUSION

A non-iterative estimator for use with a three function
basis set approximation to the attenuation coefficient is
described. The three function approximation can be used
to represent the attenuation coefficients of a high atomic
number contrast agent and body materials. The estimator
can be used with data from photon counting detectors
with multi-bin PHA. The parameters required to imple-
ment the estimator can be derived from measurements



of a calibration phantom with the clinical x-ray system
and do not require measurements of the source spectrum
or the detector energy response functions. The perfor-
mance of the estimator was evaluated using a Monte
Carlo simulation and it was found to achieve the CRLB
over a wide range of operating conditions. Therefore,
we are guaranteed that no other unbiased estimator can
have a smaller variance. The estimator outputs with the
same random data are close to the output of an iterative
maximum likelihood estimator.
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